delayed flowering1 Encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize.

نویسندگان

  • Michael G Muszynski
  • Thao Dam
  • Bailin Li
  • David M Shirbroun
  • Zhenglin Hou
  • Edward Bruggemann
  • Rayeann Archibald
  • Evgueni V Ananiev
  • Olga N Danilevskaya
چکیده

Separation of the life cycle of flowering plants into two distinct growth phases, vegetative and reproductive, is marked by the floral transition. The initial floral inductive signals are perceived in the leaves and transmitted to the shoot apex, where the vegetative shoot apical meristem is restructured into a reproductive meristem. In this study, we report cloning and characterization of the maize (Zea mays) flowering time gene delayed flowering1 (dlf1). Loss of dlf1 function results in late flowering, indicating dlf1 is required for timely promotion of the floral transition. dlf1 encodes a protein with a basic leucine zipper domain belonging to an evolutionarily conserved family. Three-dimensional protein modeling of a missense mutation within the basic domain suggests DLF1 protein functions through DNA binding. The spatial and temporal expression pattern of dlf1 indicates a threshold level of dlf1 is required in the shoot apex for proper timing of the floral transition. Double mutant analysis of dlf1 and indeterminate1 (id1), another late flowering mutation, places dlf1 downstream of id1 function and suggests dlf1 mediates floral inductive signals transmitted from leaves to the shoot apex. This study establishes an emergent framework for the genetic control of floral induction in maize and highlights the conserved topology of the floral transition network in flowering plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The FT-like ZCN8 Gene Functions as a Floral Activator and Is Involved in Photoperiod Sensitivity in Maize.

The mobile floral-promoting signal, florigen, is thought to consist of, in part, the FT protein named after the Arabidopsis thaliana gene FLOWERING LOCUS T. FT is transcribed and translated in leaves and its protein moves via the phloem to the shoot apical meristem where it promotes the transition from vegetative to reproductive development. In our search for a maize FT-like floral activator(s)...

متن کامل

ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize

Higher plants use multiple perceptive measures to coordinate flowering time with environmental and endogenous cues. Physiological studies show that florigen is a mobile factor that transmits floral inductive signals from the leaf to the shoot apex. Arabidopsis FT protein is widely regarded as the archetype florigen found in diverse plant species, particularly in plants that use inductive photop...

متن کامل

Functional characterization of the HD-ZIP IV transcription factor OCL1 from maize.

OCL1 (OUTER CELL LAYER1) encodes a maize HD-ZIP class IV transcription factor (TF) characterized by the presence of a homeo DNA-binding domain (HD), a dimerization leucine zipper domain (ZIP), and a steroidogenic acute regulatory protein (StAR)-related lipid transfer domain (START) involved in lipid transport in animals but the function of which is still unknown in plants. By combining yeast an...

متن کامل

The indeterminate Gene Encodes a Zinc Finger Protein and Regulates a Leaf-Generated Signal Required for the Transition to Flowering in Maize

Flowering in plants is a consequence of the transition of the shoot apex from vegetative to reproductive growth in response to environmental and internal signals. The indeterminate1 gene (id1) controls the transition to flowering in maize. We show by cloning the id1 gene that it encodes a protein with zinc finger motifs, suggesting that the id1 gene product functions as a transcriptional regula...

متن کامل

Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation

Appropriate timing of flowering is critical for reproductive success and necessarily involves complex genetic regulatory networks. A mobile floral signal, called florigen, is a key molecule in this process, and flowering locus T (FT) protein is its major component in Arabidopsis. FT is produced in leaves, but promotes the floral transition in the shoot apex, where it forms a complex with a basi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 142 4  شماره 

صفحات  -

تاریخ انتشار 2006